

- Hawaii, California, Bering Straight
- Bounty-hunting
- Pandora's Box
- Breadfruit
- Molecular systematics

The voyage of the HMS Bounty, 1787-1789

-23 Dec 1787, departed for Tahiti Mission: To collected breadfruit for West Indies.

8 Oct 1788, reached Tahiti

5 mos. Collecting & preparing 1015 breadfruit trees.

4 Apr 1789; set sail for West Indies

After the mutiny, 1789

Party julia Isla

HMS Pandora

-14 mutineers caught, held in "Pandora's Box"

-Return (1791): Great Barrier Reef, 4 prisoners and 31 crew lost, Timor refuge.

-Britain (1792): 10 surviving "mutineers" tried.

Why the mutiny?

-Sterile throughout much of range in Oceania. Classic example of species (crop plant) that evolved & spread with humans.

		Breadfr	uit, <i>Artoc</i>	arpus a	Itilis
ALT =	ed & Ster	rile	St	erile	
			-	North Facific Ocean	
I INCOMENTAL OF	Seeded &	Sterile		Steril	
		-Where, how, an -What is the wile -Why & how hav -What role have and dispersal?	Sterile d when did h d progenitor ve sterile var humans had	preadfruit or species? ieties persiss in breadfru	riginate? ted? tit origins
indian Ocean	-	- Lan	=	d.	jana ang a a a a a a a a a a a a a a a a

	Nyree Conard Zerega Dwotor, East Biology and Constraints Maders Program Northeastern University & The Chicago Botanic Garden	
Ansergia dilla (lavellar)	200 Reaches Hogen 61-60A Evension, E. 60208 Phone: (647) 407-1026 Ereals: Carena Skrochwestern edu Ph.D. 2003, <u>Very York University</u> and <u>The New York</u> Bolascial Garden PLEUCATIONS	
Zerega, N.J.C., D. Ragone, and 238 in T.J. Motley, N.J.C. Zereg Concervation of Crops. Columbia	4.7.J. Modey. 2005. Breadlinit Origins, Diversity, and Hanna-fi ga, and H.B. Cross Jeds. J. Darwin, 's Harvest: New Approaches in University Press, New York , New York , USA.	ecilated Distribution. Pp. 213- to the Origins, Evolution, and
Motley, T.J., N.J.C. Zerega, an Conservation of Crops. Columbia	ad H.B. Cross. 2005. Darwin's Harvest: New Approaches to f it University Press, New York , New York , USA	be Origins, Evolution, and
Zeevga, N.J.C., D. Ragene, and Moraceael). <u>Systematic Betavy</u>	d T.J. Modey. 2005. Species limits and a taxonomic treatment of 30(1):603-615	Chendfisit (Artocarpsz ,
Zerega, N.J.C ., W.L. Clement, family based on chiceoplast and a	S.I. Datwyler, and G.D. Weiblen. 2005. Biogeography and di anclear DNA sequences . <u>Molecular Phylogenetics and Evolu</u>	vergence times in the multi-erry cires 37: 402-416
Zerega, N.J.C., Mound, L.A., (Moraceae) is mediated by a new Plant Sciences 165(5): 1017-10	and G.D. Webles. 2004. Pollination in the New Guines enders a species of thejos. <i>Thejos arctionyscists</i> (Thysanopters: Thejoid 126	ic Antoropoli decipiera let) International Americal of
Zerega, N.J.C., D. Rapine, an Oceania . <u>American Journal of</u>	d T.J. Motley. 2004. Complex origins of breadfinit Implication Remark 91(5), 760-766	for human migrations in
Motley T. J., L. Ltick and N. J. C racamata 3. Proceeding of the	C. Zerega. 2004. Genetic diversity and DNA fagerprinting of Global Summir on Medicinal Plants 1112-118.	black colorth (fctawa
Zerega, N.J.C. 2003. The Break	dinit Trail. Natural Batory 112(10): 46-51	
Zerega, N.J.C., 5 Mori, C Lis (AFLP) to identify black colorsh	ndepist, Q. Zheng, and T.J. Modey. 2002. Using amplified fragm (Actuate reconstral). <u>Economic Betwee 56(2):154-164</u> .	nent length polymorphisms
Bultum, T.L. and N.J. Conard Amoreum (Leoidopters North	. 1998. Effects of endophytic funges, sutrient level, and plant da idar). Environmental Entophyter, 27(3):631-635.	mage on performance of Fall

Amplified Fragment Length Polymorphisms (AFLPs) (DNA fingerprinting)

> Isozymes / Allozymes Analysis (protein profiling)

