The PA Flora from a Macroevolutionary and Physiogeographical Perspective

Reading:

Pages 5-7 in Rhoads & Block.

Page ix-xi in Wherry ET, JM Fogg, & HA Wahl. 1979. <u>Atlas of the Flora of Pennsylvania</u>. The Morris Arboretum, Philadelphia. The particular section headers are "Introduction" (p. ix), "Nomenclature" (p. ix), "Geology of Pennsylvania in Relation to Plant Distribution" (pp. ix-x), and "Plants of Unusual Habitats" (p. xi).

- A. Generalities
 - 3400 vascular plant species (2/3 are native)
 - •191 trees (130 native)
 - •273 shrubs (170 native)
 - •32 lianas (22 native)
 - •70 vines (46 native)
 - 116 extirpations

Rhoads & Block. 2007. Plants of Pennsylvania.

B. Taxonomic Breakdown•94 Ferns & Fern Allies•29 Gymnosperms

Rhoads & Block. 2007. Plants of Pennsylvania.

C. Important Families •Asteraceae (327)

Aster (Symphyotrichum) novae-angliae (aster)

Helianthus annuus (sunflower)

Solidago canadensis (goldenrod)

Achillea millefolium (yarrow, milfoil)

C. Important Families •Poaceae (281)

Setaria viridis (bristlegrass, foxtail grass)

Poa annua (annual bluegrass)

C. Important Families •Cyperaceae (275)

Carex grayi (sedge)

C. Important Families •Fabaceae sensu lato (98)

Chamaecrista (partridge-pea)

Albizia (mimosa tree)

C. Important Families •Orchidaceae (58)

Goodyera pubescens (rattlesnake-plantain)

Cypripedium parviflorum (yellow lady's Slipper)

D. Important Genera •Carex (166)

•Cyperus (29) and Juncus (29)

•Symphyotrichum (26)

•Solidago (25) and Dichanthelium (25)

•Quercus (21)

Physiogeography & The Flora

4 Main Physiogeographic Provinces

- Geographic regions with uniform geo-physical characteristics.
- These influence broad patterns of plant distribution
 & diversity.

Boundary: R&V, marked by escarpment (Plataeu front) rising several 100 ft.

Topography: High elevation, low relief: relief due to dissection by streams/rivers.

Geology:

1. Near W & N of Scarp:

"Summits" capped by horizontal, resistant sandstone bands. Acid soils, dry on outcrops, boggy around springs /depressions.

2. Far W & N:

Less resistant sandstones & shales, lower elevation.

Vegetation:

Northern plants; and plants of Ohio Valley and Great lakes basin.

Boundary: AP & Piedmont

Topography: Parallel high elevation ridges and lower valleys.

Geology:

- 1. Ridges are sandstone outcrops, acid soils.
- 2. Valleys limestone.; circumneutral, basic
- 3. Some slopes with prominent shale bands forming shale barrens; acid and poor soil development.

Boundary: R&V, CP

Topography:

Low to moderate relief; hilly on crystalline bedrock. Complexly folded/faulted.

Geology:

- 1. Hilly on crystalline bedrock; acid soils. Ridges are sandstone outcrops.
- 2. Low elevations limestone; circumneutral/basic soils.
- 3. Metamorphic rocks & plutons.

Vegetation:

Variable, including southern plants at northern edge; Lower Susquehanna Valley important.

D. Coastal Plain

Boundary: Piedmont, Fall Line. Topography:

Flat, low.

D. Coastal Plain

Geology:

Unconsolidated gravels and sands.

Vegetation:

Southern plants and Delaware River. Wetland plants common in sluggish waterways. Numerous invasives.

Sagittaria eatonii

Part of larger system based on Appalachian uplift.

CLAIR PARK

The PA Flora 458 Ma: Did not exist. No plants, no animals on land.

A. Taconic Orogeny (450-435 Ma)

- A. Taconic Orogeny (450-435 Ma)
 - Island arc accretion
 - Taconic Mountains (Pennsylvania) form

B. Post-Taconic Passive Phase (435-405 Ma)

- Mtns erode
- PA's first plants bryophytes diversify along lakes & streams; arthropods follow.

- C. Acadian Orogeny (405-360 Ma)
 - Island arc #2 accretion
 - Acadian Mtns.
 - PA's first vascular plants diversify.

- D. Post-Acadian Passive Phase (360-285 Ma)
 - Fern, Lycopod, Horsetail forests.

D. Post-Acadian Passive Phase (360-285 Ma) Fern, Lycopod, Horsetail forests.

DISTRIBUTION OF PENNSYLVANIA COALS

COMMONWEALTH OF PENNSYLVANIA DEPARIMENT OF CONSERVATION AND NATURAL RESOURCES BUREAU OF TOPOCRAPHIC AND GEOLOGIC SURVEY www.dem.state.gau.au/topogeo

- D. Post-Acadian Passive Phase (360-285 Ma)
 - Acadian Mtns. erode
 - Amphibious tetrapods diversify

- E. Alleghenian Orogeny (285-245 Ma)
 - African/Eurasian Collision w/ NA

E. Alleghenian Orogeny (285-245 Ma)-African-Eurasian collision-Pangea forms

- F. Pangean Passive Phase (245-210 Ma) -Alleghenian Mtns erode?
 - -Mass extinction.

-Mass extinction.

- •90-95% of marine species.
- •70% of land species.
- •Perhaps 99.5% of all organisms.

Why the mass extinction?

- •90-95% of marine species.
- •70% of land species.
- •Perhaps 99.5% of all organisms.

Influence on Biota Today?

Extinction of giant lycopods, horsetails, & ferns.
Seed plants evolve to fill void

•Extinction of dominant amphibians •Reptiles evolve to fill void

G. Mid-Jurassic Rifting Phase

•Jurassic.

- •210 present Ma.
- •Formation of Atlantic.
- •Giant reptiles evolve.
- •Angiosperms evolve.

H. Isostatic Rebound & Peripheral Bulge

•Ongoing

•Causal factors:

•Erosion of Alleghenian (ancient).

•Glacial melt (relatively recent).

•Formation of Atlantic (ongoing).

Future World?

