Topic 08

Secondary Metabolites

1) Hoefnagles p. 379 (Pacific Yew), 460-461 (Cash Crop; Candy, Herbs, and Drugs)

2) The relevant chapter on the Ethnobotany of Secondary Metabolism in lab manual

I. Plant Secondary Metabolites

A. Definitions

1) 1° vs. 2 ° Metabolism-

I. Plant Secondary Metabolites

B. Some 2 ° Metabolites

Compound	Example Source	Human Use
ALKALOIDS		
Codeine	Opium poppy	Narcotic pain relief; cough suppressant
Nicotine	Tobacco	Narcotic; stimulant
Quinine	Quinine tree	Used to treat malaria; tonic
Cocaine	Coca	Narcotic, tea, anesthetic, stimulant

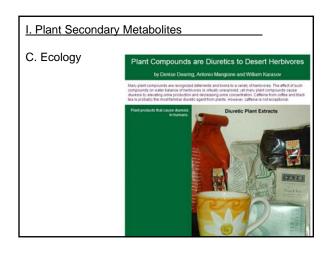
I. Plant Secondary Metabolites

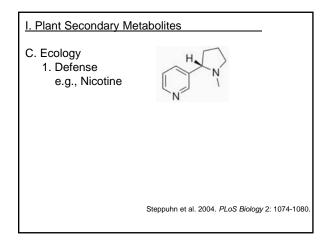
B. Some 2 ° Metabolites

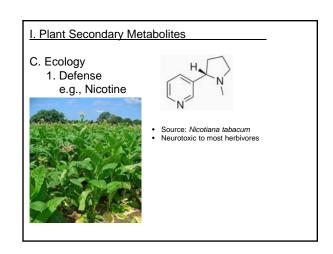
Compound	Example Source	Human Use
ALKALOIDS		
Codeine	Opium poppy	Narcotic pain relief; cough suppressant
Nicotine	Tobacco	Narcotic; stimulant
Quinine	Quinine tree	Used to treat malaria; tonic
Cocaine	Coca	Narcotic, tea, anesthetic, stimulant
PHENOLICS		
Tannin	Leaves, bark, acorns	Leather tanning, astringents
Salicin	Willows	Aspirin precursor
Tetrahydrocannabinol	Cannabis	Treatment for glaucoma & nausea

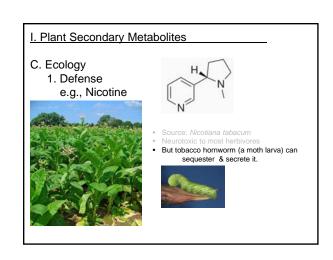
I. Plant Secondary Metabolites

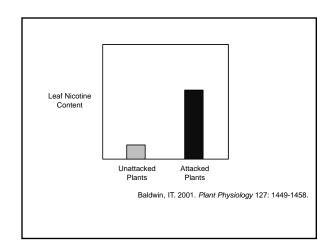
B. Some 2 ° Metabolites

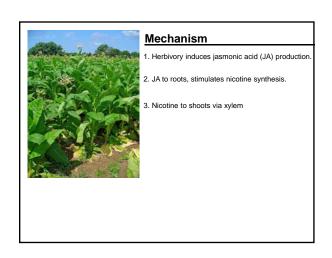

Compound	Example Source	Human Use
ALKALOIDS		
Codeine	Opium poppy	Narcotic pain relief; cough suppressant
Nicotine	Tobacco	Narcotic; stimulant
Quinine	Quinine tree	Used to treat malaria; tonic
Cocaine	Coca	Narcotic, tea, anesthetic, stimulant
PHENOLICS		
Tannin	Leaves, bark, acorns	Leather tanning, astringents
Salicin	Willows	Aspirin precursor
Tetrahydrocannabinol	Cannabis	Treatment for glaucoma & nausea
TERPENOIDS		
Camphor	Camphor tree	Component of medicinal oils, disinfectants
Menthol	Mints & eucalyptus	Strong aroma; cough medicines

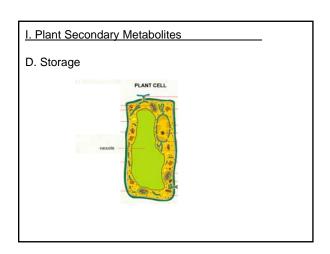

I. Plant Secondary Metabolites

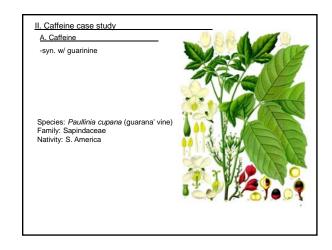

C. Ecology

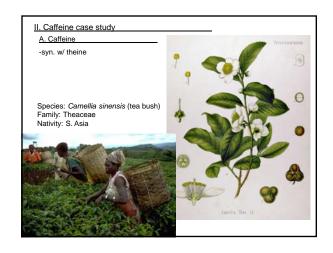

Nicotine's Defensive Function in Nature

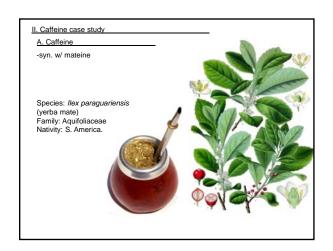

Steppuhn et al. 2004. PLoS Biology 2: 1074-1080.

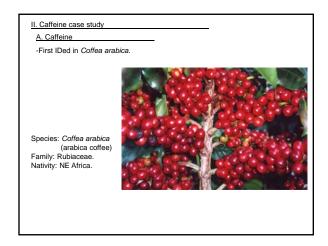


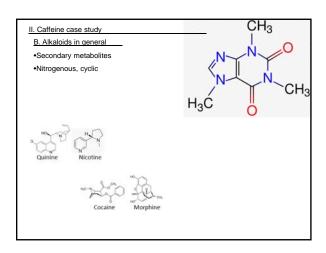


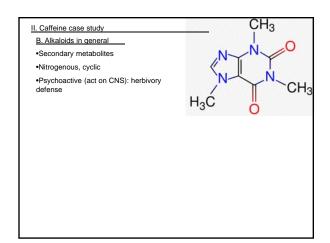


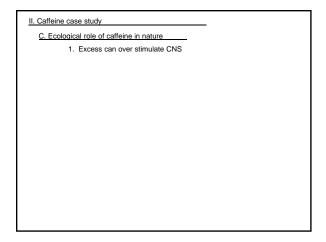


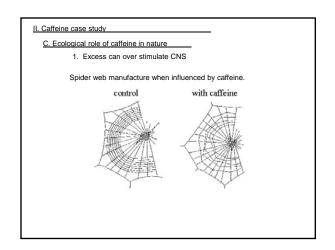

I. Plant Secondary Metabolites C. Ecology 1. Defense 2. Attraction e.g., colors & floral fragrances




II. Caffeine case study A. Caffeine -Alkaloid -Coffea, Theobroma, Camellia, Cola, etc. -Psychoactive stimulant, diuretic







II. Caffeine case study

C. Ecological role of caffeine in nature

- 1. Excess can over stimulate CNS
- 2. Vertebrate diuretic

D. Caffeine's effects on CNS

- Caffeine from coffee in blood w/in 5 min
 Stimulates heart
 Increases stomach acidity
 Increases urine output
 10% rise in metabolic rate

- •Mimics feelings assoc. w/ adrenaline

caffeine

caffeine

D. Caffeine's effects on CNS

- •Caffeine from coffee in blood w/in 5 min

- *Caffeine from coffee in bloc *Stimulates heart *Increases stomach acidity *Increases urine output *10% rise in metabolic rate

caffeine

•Excess (1 g; 10 cups) can cause anxiety, headache, dizziness, insomnia, heart palpitations, delirium, 4% lower birth weights.

D. Caffeine's effects on CNS

- Caffeine from coffee in blood w/in 5 min
 Stimulates heart
 Increases stomach acidity

- •Increases urine output •10% rise in metabolic rate

•Mimics feelings assoc. w/ adrenaline

•Excess (1 g; 10 cups) can cause anxiety, headache, dizziness, insomnia, heart palpitations, delirium, 4% lower birth weights.

•Ranks as most widely used psychoactive drug worldwide (coffee, tea, additives to soft drinks)

D. Caffeine's effects on CNS

How?

Antagonist of adenosine.

- Adenosine:
 Attaches to brain cell adenosine receptors.
 Neurotransmitter inhibitor.
 Promotes sleep (accumulates in brain each waking hour).
 Suppresses arousal.

caffeine

E. Caffeine and Parkinson's prevention?

What is Parkinson's Disease?

- •no cure, just treatments
- •Symptoms: trembling arms and legs, trouble speaking, and poor coordination
 •Associated with loss of dopamine-transmitting neurons in midbrain

E. Caffeine and Parkinson's prevention?

What is Parkinson's Disease?

- •no cure, just treatments
- Symptoms: trembling arms and legs, trouble speaking, and poor coordination
- •Dopamine levels fall, and the balance between dopamine and other
- Blocking of adenosine receptors elevates levels of dopamine and other neurotransmitters disrupted, affecting muscular control
 Blocking of adenosine receptors elevates levels of dopamine in brain.

E. Caffeine and Parkinson's prevention?

Honolulu Heart Program study of 8,000+ men over 30?

≥28 oz/day
20-24 oz/day
12-16 oz/day
4-8 oz/day
Nondrinker
0 2 4 6 8 10 12
Incidence Rate
(#/10,000 person-years)

• Blocking of adenosine receptors by caffeine elevates levels of dopamine in brain.

F. Caffeine and Theobromine are similar in structure and action

Table 1. Stimulant alkaloids in world's major stimulating beverages (Simpson 1986). Given in % weight. Amt. in particular beverage depends on how it is made.

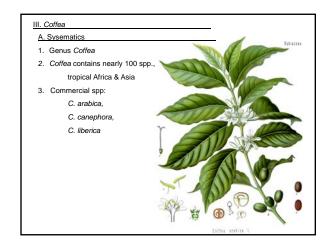
Plant, part	Caffeine	Theobromine
Coffee, unroasted, dried seeds	1-1.5	
tea, dried lvs.	2.5-4.5	
Cacao, dried or fresh seeds	0.6-0.8	1.7-2.4
Kola, fresh seeds	2.0	
Guarana, dried fruit	3.0-4.5	

CH₃

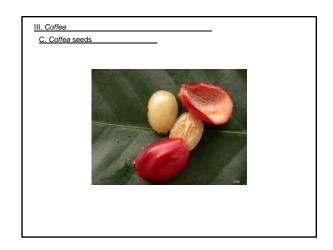
G. Caffeine in some beverages

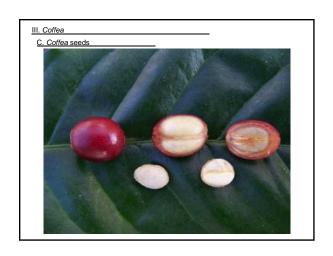
Table 2. Caffeine quantities in select beverages.

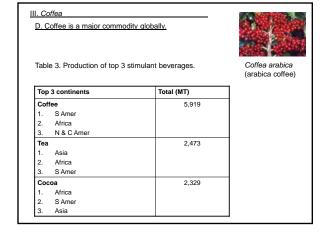
Drink	Caffeine (mg)
Coffee (Starbucks)	
12 oz drip	240
1 oz espresso	?
12 oz drip decaf	19

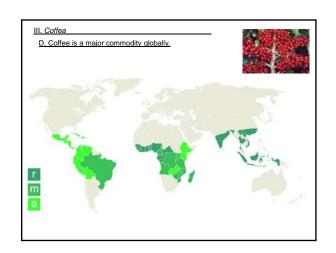

G. Caffeine in some beverages

Drink	Caffeine (mg)	CH
Coffee (Starbucks)		H₃C 🖔
12 oz drip	240	caffeine
1 oz espresso	75	Callelle
12 oz drip decaf	19	

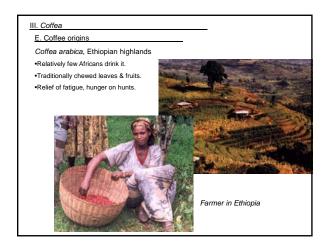

Table 6. Average caffeine content in products (most amounts from the Center for Science in the Public Interest, 2007; chocolate amounts from Simpson and Orzogoly 1995).

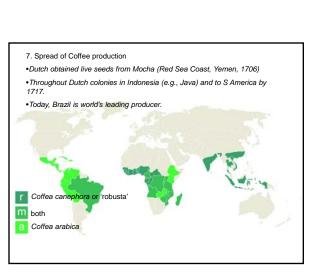

Product	Caffeine (to the nearest mg)
Coffee (Starbucks)	
12 oz drip coffee	240
1 oz espresso	75
12 oz drip decaf coffee	19
Tea (various)	
12 oz brewed tea	80 (60-180)
12 oz Nestea	26
12 oz Snapple	14-32
Cocoa and chocolate	
(various)	
12 oz, from powder	14 (4.5-20)
1 oz baking choc	35
1 oz dark choc	20
1 oz milk choc	6
Soda (various)	
8.3 oz Red Bull	80
12 oz Jolt Cola	72
12 oz Mountain Dew	54
12 oz Dr. Pepper	42
12 oz Pepsi	38
12 oz Coca-Cola Classic	35











E. Coffee (the drink) developed in Yemen Arrival in Yemen and Arab culture in 13-14th century, where it was first brewed (hence, Coffea arabica). ca. 1900

F. Coffee timeline

- 1. Yemen 13-14th century.
- 2. Arabia to Egypt by 1510.
- 3. To Italy & Europe by 1616.
- Vienna priests threatened by "coffee culture", but Pope Clement VIII would not ban coffee.
- 5. To England by 1650 and coffee houses became important socio-politico institutions.
- 6. Europe looked to break Arabian monopoly on production. (Arabs killed embryos in seeds before export).