

. Overview

B. Phylogenetic Evidence1. Characters & Character states

b. Molecular Characters (e.g., DNA sequence characters)

> Protein coding genes (e.g., cox1 or rbcL) Structural RNA genes (e.g., 18S or 26S rDNA)

I. Overview

B. Phylogenetic Evidence1. Characters & Character states

b. Molecular Characters (e.g., DNA sequence characters)

> Protein coding genes (e.g., cox1 or rbcL) Structural RNA genes (e.g., 18S or 26S rDNA)

e.g., Position 36 in rbcL gene: 0 = A; 1 = G; 2 = C; 3 = T.

or

e.g., Position 36 in rbcL gene: A; G; C; T.

I. Overview

B. Phylogenetic Evidence1. Characters & Character states

b. Molecular Characters

(e.g., amino acid sequence characters)

e.g., Position 5 in rubisco: 0 = glutamine; 1 = proline; etc.

I. Overview

B. Phylogenetic Evidence

c. Primary Homology Assessment (during character coding and scoring)

e.g., PETAL COLOR: 0 = red; 1 = blue

Position 4 in rbcL A ; G; C; or T

						and the second	X
						-	Ĩ
	d Data N						
	d. Data N	latrix					
	VERTEBRAE	LEGS	ENDOTHERMY	FUR	MAMMARY GLANDS	OPPOSABLE THUMB	TAI
Snail	0	0	0	0	0		•
Fish	1	0	0	0	0	-	1
Lizard	1	1	0	0	0	0	1
Bird	1	1	1	0	0	0	1
Cow	1	1	1	1	1	0	1
Monkey	1	1	1	1	1	1	1
Gorilla	1	1	1	1	1	1	0
Human	1	1	1	1	1	1	0
*Note: a	"-" denotes that	t the ch	aracter is inapplic	able-i.	e., not relevan	-for that spec	ies.

I. Overview

C. Recognizing synapomorphies to resolve cladogram

1. Uses the OG to root the cladogram (cladogram is rooted Between the OG and the IG)

2. Parsimony

