
Topic 11 Hormones & Tropisms

Stern, 12 ed., Chapter 11.

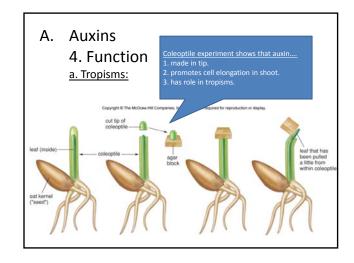
III. Hormones

- •Regulate growth & development (stimulate or repress).
- •May act far from source.
- Potent.
- •Often act in concert w/ (or in opposition to) others.

A. Auxins
2. Origin

Shoot apex; young seeds

A. Auxins


3. Transport

a. Long distances:

- 1) Phloem (mostly phloem parenchyma).
 2) Polar Transport (basipetal from shoot apex; active; 5-20 cm/hr).

b. Short distances:

1) Diffusion (1 cm/hr)

A. Auxins 4. Function b. Apical Dominance: 1) Auxin ilnhibits axillary buds. 2) Auxin gradient from shoot apex. 2) Generally stronger in conifers. 3) Experiment: cut off apex (then apply auxin).

A. Auxins

4. Function

c. Cell expansion/elongation:
1) Acidifies walls, makes them plastic.

d. Spring activation of vascular cambium & differentiation of phloem & xylem:

e. Adventitious roots:

f. Fruit development (from seeds): 1) Pericarp is typically sensitive.

A. Auxins

5. Commercial applications

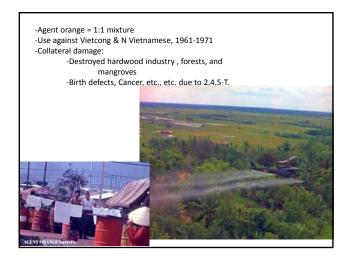
(mostly via synthetics)

a. Some seedless fruits:

1) e.g., tomatoes

b. Orchard fruit ripening uniformity/delaying drop:

c. Rooting hormone:



e.g., propagation by cuttings in *Gardenia* (Coffee family)

<u>d. Pruning and shaping of plants by manipulating apical dominance:</u>

e. Herbicides: 1) Large amounts disrupt growth, defoliate, and kill plants. Further, synthetics not properly metabolized (degraded) 2) Include the broadleaf (dicot) herbicides 2,4-D & 2,4,5-T 3) 2,4,5-T now banned. Manufacture makes dioxins - v. toxic to animals.

- B. Gibberellins (Gibberellic Acid)
 - 1. Properties

First isolated from Gibberella fujikoroi in study of "foolish seedling disease" of rice.

- B. Gibberellins (Gibberellic Acid)
 - 2. Origin

Young tissues of shoot & seeds.

- B. Gibberellins (Gibberellic Acid)
 - 3. Transport
 - a. Long-distance: xylem & phloem
 - b. Short-distance: diffusion.

B. Gibberellins (Gibberellic Acid)

4. Function

a. Stem elongation (via cell divis & elongation)

b. Bolting

Effects of GA on Cabbage (Brassica oleracea; mustard family)

- B. Gibberellins (Gibberellic Acid)
 - 4. Function
 - c. Seed dormancy break (mobilizes enzyme involved in starch breakdown).
- 5. Commercial apps
- a. Sugar cane production
- -GA application can increase this.

c. GA synthesis blockers -dwarfing of plants in horticulture.

C. Cytokinins 1. Properties Vereto Page 1 to 1 grand of the Control of the Cont

C. Cytokinins 2. Origin

Root apex (& radicle of germinating seed)

- C. Cytokinins
 - 3. Transport
 - a. Long-dist. (xylem, phloem)
 - b. Short-dist. (diffusion)

- C. Cytokinins
 - 4. Function
 - a. Cell division (with auxin)-auxin w/o CK = cellenlargement but no ÷

C. Cytokinins

- 4. Function
- b. Negative regulator of apical dominance (CK/auxin ratio determines dormancy or break of buds; application to lateral buds can caused them to break)

C. Cytokinins

- 4. Function
- c. Adventitious shoots/roots

Auxin/CK High (e.g., stem cutting):

parenchyma diffs. into roots.

Auxin/CK low (e.g., decapitated root):

parenchyma diffs. into shoots

C. Cytokinins

- 5. Commercial apps
 - a. Tissue culture (w/ auxins)

Auxin = CK (undiff. growth) Auxin > CK (roots diff.) Auxin < CK (shoots diff.)

C. Cytokinins

- 5. Commercial apps
 - b. Delay of leaf senescence in bioengineered tobacco.

Tobacco that maintains elevated CK longer delays leaf senescence.

ח	Et	h٧	l۵r	Δ

thylene 1. Properties

 C_2H_4

gaseous

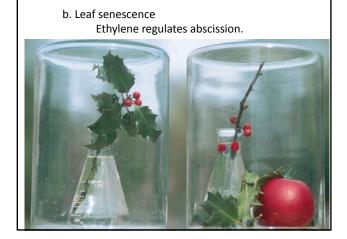
D. Ethylene

2. Origin

a. Made in most tissues, especially during stress (wounding), senescence, fruit ripening.

b. Formation requires O₂.

D. Ethylene


3. Transport

Diffusion.

D. Ethylene

4. Function

a. Fruit ripening e.g., apples, bananas, avocados but not grapes.

D. Ethylene

5. Commercial application

- a. Released by burning of fuels (such as kerosene or natural gas)
 - -therefore, these can be used to hasten fruit ripening.
 - -therefore, greenhouse growers should be wary

b. O_2 required for formation. This can be used to keep fruits such as apples year round.